
Unix is a Four Letter Word: : : and Vi is a Two

Letter Abbreviation

Christopher C. Taylor

August 1993

Copyright c 1993 by Christopher C. Taylor. Permission to copy all or part

of this work is granted, provided that the copies are not made or distributed for

resale, and that the copyright notice and this notice are retained.

This work is provided on an \as is" basis. The author provides no warranty

whatsoever, either express or implied, regarding the work, including warranties

with respect to its merchantability or �tness for any particular purpose.

Corrections and suggestions are welcomed by the author. He can be reached

by electronic mail at c.c.taylor@ieee.org or by phone at 1{800{IDIOT{IQ.

i

1 Introduction

1.1 What is this thing?

In Samoa, when elementary schools were �rst established, the natives de-

veloped an absolute craze for arithmetical calculations. They laid aside

their weapons and were to be seen going about armed with slate and pen-

cil, setting sums and problems to one another and to European visitors.

The Honourable Frederick Walpole declares that his visit to the beautiful

island was positively embittered by ceaseless multiplication and division.|

R. Bri�ault

This document was not written to cause you to relive the experience of native

Samoans or cause those around you to better empathize with Frederick Walpole.

Rather, it was prepared to help acquaint new users with Unix and vi and provide

a quick reference for me in case I forgot a how to do something. Although much

of the material contained within has the same tantalizing appeal of arithmetic,

please try to contain your excitement. This document is a chronicle of my

adventures in the proverbial wonderland of Unix. Admittedly, minimal e�ort

was made to accommodate a more diverse audience. It focuses on items which

were of particular interest to me.

As our world draws closer and closer to its date with total randomness1

things will change. It should not shock you to �nd that some of the things

contained in this paper are no longer true. Try to deal with it.

1.2 Why read this thing?

I'm sure it is clear to the lazy person why a thorough knowledge of this document

is ideal, but I will explain the rational for you hard workers. In my \many" years

of experience it has become increasingly clear to me that the more you know

the easier a given task becomes. A lazy person would bene�t from reading this

because they could perform a given task with less e�ort. A hard working person

would bene�t from reading this because they could perform a greater number

of tasks in a given time period. Let's look at an example: suppose you wanted

to move a �le from one directory to another. Although this could be done by

copying it to the new directory and then deleting it from the old, knowledge of

the Unix command mv would allow you to accomplish the same task with only

one command. Cutting your workload in half like this gives you the freedom to

do half as much work as the idiot next to you2 or get twice as much done. Please

don't short change yourself by just skimming this document. Make a decision

now to learn why every word in this document is here and what it means. Know

it so well that you don't even need to think about it. I cannot begin to describe

1See the Second Law of Theromdynamics.
2Assuming you are not sitting by yourself.

ii

the pleasure you will derive from this accomplishment. Consider the words of

Alfred North Whitehead:3

It is a profoundly erroneous truism, repeated by all copy-books and by

eminent people when they are making speeches, that we should cultivate the

habit of thinking of what we are doing. The precise opposite is the case.

Civilization advances by extending the number of important operations

which we can perform without thinking about them. Operations of thought

are like cavalry charges in a battle|they are strictly limited in number,

they require fresh horses, and must only be made at decisive moments.

3For those of you who are easily persuaded, please don't take this paragraph too seriously.

iii

Contents

1 Introduction ii

1.1 What is this thing? : ii

1.2 Why read this thing? : ii

2 Unix 1

2.1 Overview : 1

2.1.1 Case sensitivity : 1

2.1.2 The shell : 2

2.1.3 Command syntax : 2

2.1.4 Correcting typos : 2

2.1.5 Controlling your terminal output : : : : : : : : : : : : : : 2

2.2 Files and directories : 3

2.2.1 Pathnames : 3

2.2.2 Naming �les and directories : : : : : : : : : : : : : : : : : 3

2.3 Online manual : 3

2.4 Basic commands : 4

2.4.1 Logging on (rlogin) : 5

2.4.2 Changing your password (passwd) : : : : : : : : : : : : : 5

2.4.3 Getting out (exit) : 5

2.4.4 Listing �les (ls) : 5

2.4.5 Catenate (cat) : 6

2.4.6 Paging display system (more) : : : : : : : : : : : : : : : : 6

2.4.7 Copying �les (cp) : 7

2.4.8 Removing �les (rm) : 7

2.4.9 Renaming and moving �les and directories (mv) : : : : : 8

2.4.10 Navigating the directory tree (cd) : : : : : : : : : : : : : 8

2.4.11 Directory creation and destruction (mkdir and rmdir) : : 8

2.5 Additional commands : 9

2.5.1 alias : 9

2.5.2 ap : 9

2.5.3 bi� : 10

2.5.4 chmod : 10

2.5.5 compress/uncompress : 11

2.5.6 df : 11

2.5.7 di� : 12

2.5.8 du : 12

2.5.9 echo : 12

2.5.10 �nd : 12

2.5.11 �nger : 12

2.5.12 ftp : 13

2.5.13 grep : 14

2.5.14 history : 15

iv

2.5.15 kill : 15

2.5.16 look : 16

2.5.17 mail : 16

2.5.18 ps : 16

2.5.19 script : 16

2.5.20 setenv : 17

2.5.21 source : 17

2.5.22 spell : 17

2.5.23 tar : 17

2.5.24 telnet : 18

2.5.25 umask : 18

2.5.26 who : 18

2.5.27 A bunch more commands : : : : : : : : : : : : : : : : : : 18

2.6 Login �les : 20

2.6.1 The .cshrc �le : 20

2.6.2 The .login �le : 22

2.7 Special characters : 23

2.7.1 Wildcards : 23

2.7.2 Redirecting output : 24

2.7.3 Pipes : 24

2.7.4 Quote characters : 25

2.7.5 Other special characters : : : : : : : : : : : : : : : : : : : 25

2.8 Miscellaneous tips : 26

2.8.1 Removing �les with strange names : : : : : : : : : : : : : 26

2.8.2 Wildcards beyond the working directory : : : : : : : : : : 27

2.8.3 Terminal input in a shell script : : : : : : : : : : : : : : : 27

2.8.4 Remote shell trick : 28

2.8.5 Loops in scripts : 28

2.8.6 More tricks : 28

2.9 Things to try : 29

3 Vi | Text Editing 30

3.1 Overview : 30

3.2 Starting vi : 31

3.3 Insert mode : 31

3.4 Command mode : 31

3.4.1 Moving around : 31

3.4.2 Deleting text : 32

3.4.3 Saving and quitting : 32

3.4.4 Copy, delete, and moving text : : : : : : : : : : : : : : : : 32

3.4.5 Search and replace : 33

3.4.6 Undo : 34

3.4.7 Repeat : 35

3.5 Vi reference : 35

v

3.5.1 Notation for this reference : : : : : : : : : : : : : : : : : : 35

3.5.2 Move commands (See also Display commands) : : : : : : 35

3.5.3 Searching : 36

3.5.4 Undoing changes : 37

3.5.5 Inserting text : 37

3.5.6 Deleting text : 37

3.5.7 Changing text : 38

3.5.8 Substitute replacement patterns : : : : : : : : : : : : : : 38

3.5.9 Remembering text (yanking) : : : : : : : : : : : : : : : : 39

3.5.10 Commands while in insert or change mode : : : : : : : : 39

3.5.11 Display commands (See also Move commands) : : : : : : 39

3.5.12 Writing, editing other �les, and quitting vi : : : : : : : : 40

3.5.13 Macros : 41

3.5.14 Switch and shell commands : : : : : : : : : : : : : : : : : 42

3.5.15 Vi startup : 42

3.5.16 The most important options : : : : : : : : : : : : : : : : : 43

3.6 Miscellaneous tips : 45

3.6.1 Line deletions : 45

3.6.2 Switching cases : 45

3.6.3 Spell checking in vi : 46

3.6.4 Additional search and replace : : : : : : : : : : : : : : : : 46

3.6.5 Removing blank lines : 47

3.6.6 Writing from bu�ers : 47

3.7 Further reading : 47

4 About the Author 48

vi

2 Unix

2.1 Overview

Unix is an operating system designed at AT&T for their own personal use. The

following electronic mail message from Dennis Ritchie may help explain who

was responsible for Unix.

From: dmr@alice.att.com (Dennis Ritchie)

Subject: re: UNIX

Message-ID: <11613@alice.att.com>

Date: 14 Nov 90 05:53:03 GMT

Organization: AT&T Bell Laboratories, Murray Hill NJ

I read,

> Looks like folks are now beginning to credit the development

> of UNIX to Kernighan and Ritchie, but I thought the principal

> investigators were *Thompson* and Ritchie. Did something change?

The differences between Kernighan Ritchie Thompson are real

but very subtle. We all look alike (middle aged with scruffy

graying beards). Note these distinctions:

-- Kernighan is slimmest, Ritchie middlest, Thompson heaviest

in body build

-- Ritchie got contacts a couple of years ago and so is the

only current non-glasses wearer

-- Thompson wouldn't touch netnews with a pole, Kernighan

secretly gets misc.invest and misc.taxes mailed to him,

Ritchie reads it more than is good for him and occasionally

contributes

-- Ritchie is the only one who has met five people who have

appeared on David Letterman (Penn, Teller, Rob Pike, Mayor Koch, and

the guy who raised the biggest hog in Ohio)

-- Kernighan has written ten times as much readable prose as has

Ritchie, Ritchie ten times as much as Thompson. It's tempting

to say that the reverse proportions hold for code, but

in fact Kernighan and Ritchie are more nearly tied

and Thompson wipes us both out.

Dennis

Through a wild4 series of events, Unix has become a standard operating system

for many. Why else would you be reading this?

2.1.1 Case sensitivity

Unix is case sensitive. This means that Unix distinguishes between uppercase

and lowercase letters, i.e. Bi� and bi� don't mean the same thing to Unix.

4Actually, I have no idea if it was wild or not, this is just a guess.

1

2.1.2 The shell

There are a number of di�erent \avors" of Unix available today. By di�erent

\avors" I mean di�erent command interpreters (called shells) which handle

your input in their own unique way. This manual covers the C shell only. Many

of the things found here will be identical with other shells, but don't count on

it. It is possible to determine which shell is in use by typing echo $SHELL. The

response for the C shell is /bin/csh which is what you should get. One other

popular shell is the Bourne shell which would respond with /bin/sh.

2.1.3 Command syntax

Unix commands begin with a command name, often followed by ags and ar-

guments some of which are optional. The generic syntax is:

command [flags] argument1 argument2 ...

Normally the ags are preceded by a hyphen to prevent them from being inter-

preted as a �lename. For example, in the command line

ls -l avhrr

ls is the program called, -l is the ag, and avhrr is the argument. This command

tells the computer to list (in long format) the �le called avhrr or, if avhrr is a

directory, to list all the �les in the directory avhrr.

2.1.4 Correcting typos

There are three tools to destroy typos that occur on the command line. 5

 Erases the previous character.

<ctrl-W> Erases the previous word.

<ctrl-U> Erases the whole command line.

2.1.5 Controlling your terminal output

If output scrolls up on your terminal screen faster than you can read it, you can

suspend it by typing <ctrl-S>. To resume the display, type <ctrl-S>. Again

section 2.4.6 will discuss how to pass output through a paging program that will

automatically display only one screen at a time. While I'm at it, <ctrl-C> will

abort a process, and <ctrl-O> will discard the output until another <ctrl-O> is

entered. Be sure to note that although the output doesn't appear, the process

is still running. <ctrl-Z> suspends the current program. You can see its job

number by typing jobs. You can resume the suspended program by giving the

fg (foreground) command, or resume it in the background with bg.

5A couple notes on notation here. The delete key varies from keyboard to keyboard. Your
delete key may be labeled DEL, DELETE, BACKSPACE, RUB, or RUBOUT. Also, <ctrl-

W> means holding down the <ctrl> key and pressing W. Control <ctrl> character commands
are not case sensitive, i.e. <ctrl-w> is equivalent to <ctrl-W>.

2

2.2 Files and directories

When you start a Unix session on a computer, you are placed in a directory

that contains your �les. This directory is called your home directory. My home

directory is /home/cernan/taylor. You can create, copy, move, and remove �les

as well as create subdirectories from here (see section 2.4).

2.2.1 Pathnames

There are a number of methods for specifying which directory and �le you

are interested in. Pathnames (the directory speci�cation) can be relative or

absolute. Absolute pathnames begin with a slash, /, and start at the root

directory. Successive directories down the path are also separated by a slash.

In the previous paragraph I gave the absolute pathname of my home directory.

Each subdirectory is a branch in the directory tree.

A relative pathname begins with the directory you are in (commonly re-

ferred to as working directory) and moves downward to a lower directory. Rel-

ative pathnames begin with the name of the �rst directory below the working

directory. Each lower directory down the path should have a slash in front of

it. Assuming I was in the /home directory, cernan/taylor would be the relative

pathname to my home directory. A \." indicates the working directory, while

\.." indicates the directory one level up (known as the parent directory). If

I were in my home directory, the relative pathname for the /home directory

would be ../.. which says go to the \grandparent" directory two directories

higher than you are now.

2.2.2 Naming �les and directories

In general, �le and directory names should be composed only of letters of the

alphabet, digits, \." 's, and \ " 's. Be aware that �les that begin with a \." do

not appear in the directory list unless a special ag has been set when doing

the list command.

The period is often used to add a su�x on to a base �lename. For example,

the source code for C programs have a .c su�x added to them, e.g. prog.c. Sep-

arating a �lename by a \." is particularly useful when using wildcard selections

(see section 2.7.1).

2.3 Online manual

All of the commands in Unix are described online in a collection of �les. They

are known as man pages because they were originally pages of the UNIX Pro-

grammer's Manual. There are eight sections of the man pages:

1. Commands

2. System calls

3

3. Library functions

4. Devices and device drivers

5. File formats

6. Games

7. Miscellaneous

8. System maintenance

If you know the name of a command, you can view its man pages by typing6

man [section] name

A program called apropos7 is available for those who don't know the name

of the command they want. The apropos program searches through the header

lines of the man pages for whatever keyword you supply and displays a list of

the man pages containing it. For example,

apropos copy

produces a list of all the man pages that contain copy in their header lines.

The list will contain commands followed by a number in parentheses, i.e. cp

(1). The number in parentheses is the section number. If the section number is

omitted when doing a man command, the man program searches through each

section until it �nds the named man page. This works �ne if the name is unique,

but a few names exist in more than one section. One example of this is intro.

There is an intro man page for each section. Typing man intro would get you

the intro man page for the �rst section, but the only way to get the intro man

page for section 5 is to type

man 5 intro

When the man pages are being displayed on your terminal, it pauses after

each screen full and displays a --More-- on the bottom line. This give you a

chance to read the information before you go on to the next screen full. Press

the space bar to scroll an entire screen forward.

2.4 Basic commands

The following few sections are devoted to many of the commands available in

Unix. The descriptions are by no means complete. The most useful commands

(at least to me) have descriptions that should su�ce for the average user. How-

ever, less useful commands have rather terse summaries. If more information is

desired for any of the commands, check the man pages. See section 2.3 on how

to use the man pages.

6Portions of commands that are in square brackets, [], are optional.
7Typing apropos or man -k do the same thing.

4

2.4.1 Logging on (rlogin)

In order to use a computer operating under Unix you need to \log on". This

attempts to protect against unauthorized use of the computer equipment. It also

lets each user de�ne their own personalized working environment on the same

computer and even work on the same computer at the same time. The basic

Unix command for remotely logging onto a computer is rlogin (remote login).

To log onto a computer type rlogin computername. You are then asked to

enter your account name, password, and then your charge code. Workstation

consoles, as well as x-terminals, are ready for your account name, password, and

charge code. The rlogin command is not needed. The characters do not appear

when you type your password to promote con�dentiality.

2.4.2 Changing your password (passwd)

Passwords are an important security measure. Don't neglect creating a \good"

password. A good password should be easy to remember for you but hard for

others to guess. Words in the dictionary, nicknames, and common chemical

compound names are poor choices for a password. One way of generating a

password is to use the �rst letter of each word in a strange yet memorable

sentence. For example, fatIwrnf could be my password based on the sentence:

For a time I would recommend no forgery.8

When you �rst receive your account you will probably be given a temporary

password. You should change your password to something else. This is done

with the passwd command. After typing passwd, you will be prompted �rst

for your current password and then twice for a new password. Please note that

this only e�ects the computer you are logged onto. You will need to repeat this

ritual on every computer you have an account on.

2.4.3 Getting out (exit)

The command for ending a Unix session is exit. Another way to log out is to type

<ctrl-D>. To avoid accidentally ending your Unix session with an inadvertent

<ctrl-D>, type the command set ignoreeof at the beginning of each Unix

session. Most lazy, or should I say e�cient, people don't like doing this every

time they log in. In section 2.6 we will discuss how to get around this threat to

our slothfulness.

2.4.4 Listing �les (ls)

The names of �les and subdirectories can be displayed with the ls (list) com-

mand. Typing ls lists the �les and subdirectories located in the working direc-

8This sentence is especially interesting because the number of letters in each word make
up the constant pi to eight signi�cant digits.

5

tory that don't begin with a \.". To see all the names, use the all ag, i.e. ls

-a.

Other interesting ags for the ls command are:

-F Marks directories with a trailing slash and executable files with

a trailing asterisk.

-l Lists in long format. Gives all sorts of information.

-R Recursively lists subdirectories encountered.

-s Gives the size of each file.

-t Sorts by time modified instead of by name.

It is possible to limit the scope of the �les and subdirectories by using the

wildcard characters discussed in section 2.7.1. For example, I would type

ls q*

if I wanted to list all the �les and subdirectories that began with a q.

Note that the ls command lists �les in the working directory only, unless you

include the pathname to another directory whose �lenames you want to list.

2.4.5 Catenate (cat)

Catenate means \to connect in a series." The cat commanddisplays the contents

of a �le. If more than one �le is placed in the command line, i.e. cat yellow

blue, the �les are displayed in succession. It is here that cat derives its name.

With the use of the redirection operator (see section 2.7.2) two �les can be

placed into a single �le. Typing

cat yellow blue > green

will cause green to contain the contents of yellow followed by the contents of

blue.

2.4.6 Paging display system (more)

The more command provides a convenient alternative to displaying text on

your terminal. The more program takes the input text and displays one screen

full worth. The last line of the screen contains --More--. To scroll an entire

screen forward, press the space bar. To scroll forward one line at a time, press

<return>. To enter the vi text editor (see section 3), type v. To quit reading,

type q.

More can be used on a text �le by typing more filename or can be used to

display the output from another program with the use of the pipe symbol (see

section 2.7.3) by typing command | more.

6

2.4.7 Copying �les (cp)

The cp (copy) command lets you duplicate a �le of choice. Here is an explanation

by examples:

cp cocoon butterfly

makes a duplicate of the �le cocoon and gives it the name buttery. Note that

the �lenames can include pathnames as well.

cp /home/cernan/taylor/tex/contract ../contract.bak

makes a copy of the �le contract found in the /home/cernan/taylor/tex directory

and places it one directory level above the working directory in a �le called

contract.bak.

If /home/cernan/taylor/tex is a directory, then

cp report /home/cernan/taylor/tex

will place a copy of report in the /home/cernan/taylor/tex directory with the

name report.

cp /home/cernan/taylor/tex/headlines .

will copy the �le headlines in the /home/cernan/taylor/tex directory into the

working directory. The name will remain unchanged.

cp /home/cernan/taylor/tex/* .

will copy all the �les (but not the subdirectories) in /home/cernan/taylor/tex

into the working directory. You can copy all the subdirectories in the directory

and �les contained in them by using the -r (recursive) ag as follows:

cp -r /home/cernan/taylor/tex/* .

Another useful ag is the -i (interactive) ag which prompts you if you are

about to overwrite an existing �le.

2.4.8 Removing �les (rm)

The rm (remove) command deletes �les that you no longer want. Just type

rm filename to remove the �le �lename. If more than one �lename is on the

command line, i.e. rm archaeologists date anything, then the �les archae-

ologists, date, and anything are removed.

7

2.4.9 Renaming and moving �les and directories (mv)

The mv (move) command moves a �le from the �rst argument to the second

argument, e.g.

mv neatguy tidyguy

moves the contents of neatguy to the contents of tidyguy. This command reminds

me of the time Chicago Bulls forward Stacey King said:

I'll always remember this as the night that Michael Jordan and I combined

to score 70 points.

after scoring one point in a game in which Jordan scored sixty-nine. All that

really happened was that the �le's name was changed. The reason it is called

the move instead of rename or something like that is that you can include

pathnames (just like you have done before in cp and rm). Including pathnames

allows you to move a �le into a di�erent directory, hence the name. The mv

command works on both �lenames and directory names exactly the same way.

The -i ag works here just like it worked with cp. Setting this ag will

prompt you before it moves a �le on top of one that already exists.

WARNING: for (i = 0 ; i <= 50 ; i++) printf(\Don't "); don't use wildcards

(see section 2.7.1) with the mv command unless the destination is a directory.

The mv command doesn't know what to do if you tell it to move a bunch of

�les into a single �lename and so it will move all the �les you selected on top of

each other.

2.4.10 Navigating the directory tree (cd)

The cd (change directory) command does just what it says. It changes your

working directory. The command syntax is

cd pathname

where the pathname can be either relative or absolute.9

2.4.11 Directory creation and destruction (mkdir and rmdir)

New directories are created with the mkdir (make directory) command and

removed with the rmdir (remove directory) command. The syntax is

mkdir directory

and

9If these words don't make sense to you, you are either not paying attention or aren't
reading this in order. I don't have a problem if you aren't reading this sequentially if you are

willing to deal with some of this terminology ambiguity, but if you are struggling with the
�rst problem, go back and reread section 1.2.

8

rmdir directory

The pwd (print working directory) commanddisplays the absolute pathname

of your working directory.

2.5 Additional commands

A number of additional commands are listed in this section. If you have forgot-

ten what is in section 2.3, see section 1.2 and then section 2.3 for advice on how

to get more information about the commands in this section.

2.5.1 alias

The alias command allows you to de�ne shortcuts to save yourself time. In a

sense, alias creates a link between a requested set of keystrokes and another

set of keystrokes. For example, to use the rm command in interactive mode I

would type

rm -i

By typing

alias rm 'rm -i'

the alias command would allow me to avoid typing the interactive ag, -i ,

every time a called the rm command.

The alias commandde�nes a link between the �rst and the second arguments

following the command. Whenever the �rst argument is entered at the command

prompt, the Unix shell substitutes it with the second argument. An alias link

stays in e�ect until the Unix session is ended or the link is \unaliased". To

destroy the link in my previous example I would type unalias x. The power of

this command is more easily realized when used in a login �le (see section 2.6).

2.5.2 ap

The ap (auto pilot) command has a deceptive name. It doesn't actually place

the computer on auto pilot. The ap command reads your mind and attempts

to perform the commands you want done. For example, thinking \I really wish

I had a backup copy of the tanana image." will cause ap to input

cp tanana.* tanana_bak.*

to the Unix shell. Preceding a thought with \ignore" will cause ap to ignore

your next thought. Although, with enough practice, the ap command can be a

signi�cant time saver, there are a few unresolved problems with this command.

9

1. I often change my mind while in the thinking process. In the previous

example I may have decided later that I wanted to call the backup copy

something else. No big deal here, ap just changes the �lename but it isn't

the most e�cient use of computer resources.

2. All of the commands are echoed to the screen so that you know exactly

what is going on. This is great as long as you remember to think \ig-

nore" before you read each command. If you forget, the command will

be executed again. This will continue until you remember to include the

\ignore" ag or you think, \What is going on here?" which will cause the

man pages for the particular command you are repeating to be displayed.

3. The ap command reads the strongest mind waves (known as grey waves)

that it �nds. If you have weak grey waves or your monitor is closer to

someone else in your o�ce, ap may listen to someone else's mind instead

of yours. Also, walls do not provide insulation from grey waves, so if your

monitor is near a wall, be prepared for some grey waves from minds on

the other side of the wall to occasionally sneak in.

4. As you probably know, humans (you included) don't use their brains to

their highest potential. In fact, many believe that we use as little as 5%

of our brain's capacity. The problem here is that ap is only able to read

around 80% of your mind. Unfortunately, many people use the 5% of their

mind that ap can't read. When ap is called it scans your mind for activity,

if none is found it prints the following cryptic error message:

ap: Command not found.

This indicates that it couldn't �nd a command in your head. Don't worry,

this doesn't mean that you aren't thinking, it just means that you use the

part of your brain that ap can't access.

2.5.3 bi�

The bi� command runs in the background and lets you know when electronic

mail arrives. It was named after a dog at Berkeley that was known for barking

at the mailman. To tell bi� to bark at the mailman, type biff y. To tell bi�

not to bark at the mailman, type biff n.

2.5.4 chmod

Your �les and directories have a number of attributes that are set when they

are created. Listing the �les with the -l ag, i.e. ls -l, displays the attributes

of each �le and directory in the working directory. Here is an example listing:

10

total 3

drwxr-xr-x 2 taylor 512 Aug 2 08:41 .

drwxrwxr-x 12 taylor 1024 Aug 2 08:41 ..

-rw-r--r-- 1 taylor 5 Aug 2 08:41 blue

-rw-r--r-- 1 taylor 12 Aug 2 08:41 green

-rw-r--r-- 1 taylor 7 Aug 2 08:41 yellow

To the far left of each �le or directory name are ten characters which show

the attributes. The �rst column indicates whether the entry is a directory (d)

or not (-). The other nine characters are organized into three groups of the

three. The �rst group pertains to the owner (that would be you for your �les).

The second group pertains to people in your group, if you are in a group. The

third group pertains to everyone else. Within each group of three are three

characters. The �rst indicates read (r) permission. The second indicates write

(w) permission. The third indicates execute (x) permission. If the permission is

not present, a \-" will replace the r, w, or x.

The chmod (change mode) command lets you change the attributes on a

�le or directory. There are a number of forms, but I have chosen to cover the

following syntax because of its similarity with umask.

chmod mode filename

where mode is a three digit octal number. The �rst digit pertains to the owners

privileges. The second pertains to the groups privileges, and the third pertains

to everyone elses privileges. Each octal digit is composed of the addition of

three components. The read component is worth 4, the write component worth

2, and the execute component worth 1. Suppose I wanted the owner to have

read, write, and execute privileges, the group to have read and write privileges,

and everyone else to have read privileges only. The octal number I would use

with chmod would be 764.

2.5.5 compress/uncompress

The compress and uncompress commands compress a selected �le using adaptive

Lempel-Ziv coding to help conserve disk space. This technique almost always

does a better job than the Hu�man coding technique used by the pack/unpack

commands. Typing compress edison would create a compressed �le called

edison.Z which could be resorted to its original condition by typing uncompress

edison or uncompress edison.Z.

2.5.6 df

The df (disk free) command displays the amount of free disk space. This is

often quite handy when determining if there is enough space to store an image

on a particular hard drive. A quick glance at the man pages should indicate

what ags should be set for the computer you are on.

11

2.5.7 di�

This program is useful in determining di�erences between two �les or directories.

It produces a list of lines that must be changed (c), appended (a), or deleted

(d) to make the �rst �le match the second. Lines from the �rst �le are pre�xed

by \<" and lines from the second are pre�xed by \>".

The -b option ignores trailing blanks and treats all other strings of blanks

as equivalent. The -i option removes case sensitivity so that uppercase and

lowercase letters match.

2.5.8 du

The du (disk usage) command displays the number of kilobytes consumed by

each �le and recursively provides results on directories. This can be useful for

determining who the big disk space hogs are when you need more room. Typing

du -s *

from the parent directory of your home directory, e.g. /home/cernan, gives a

grand total of the kilobytes consumed by each user.

2.5.9 echo

The echo command echos a string to the terminal. One use for this command

is in determining the contents of environment variables. Environment variables

are variables that Unix keeps track of at the shell level. Two common examples

are TERM and PATH. The TERM variable identi�es what kind of terminal you

are using. The PATH variable contains a list of pathnames to search through

when looking for commands. More information on environment variables can

be found in section 2.6.

To see the contents of the TERM variable type echo $TERM.

2.5.10 �nd

The �nd command recursively descends through the directory tree looking for

�les that match a logical expression. The �nd command has many options and

is very powerful. Rather than go into detail here, I encourage you to take a

look at the man pages for �nd. The �nd command does have a rather contorted

syntax which is not easily mastered, and if truth be written, that's why I'm not

spending more paper on it here.

2.5.11 �nger

The �nger command displays information about users. It can be used both

locally and across the internet. For example,

finger taylor@en.ecn.purdue.edu

12

will display information about me from my computer account at Purdue Uni-

versity.

2.5.12 ftp

The easiest way to copy �les from one disk to another is to use the cp command.

However, often I am interested in copying �les from one computer to another.

The ftp command uses the File Transfer Protocol (ftp) to transfer data over a

network connection.

To use ftp you open a connection to a remote computer and log onto that

computer that can't access each others hard drives. The remote computer runs

its own version of ftp, but you are in control of it. Within the ftp program

you can list the �les in your remote computer's directory, get copies of �les on

the remote computer, put copies of �les from your computer onto the remote

computer, and even delete �les on the remote computer.

Here is an example of a ftp session:

ftp baboon (1)

Connected to baboon.ecn.purdue.edu.

220 baboon.ecn.purdue.edu FTP server (Version 4.178 Tue Jun 18 13:30:39

EST 1991) ready.

Name (baboon:taylor): taylor (2)

331 Password required for taylor.

Password: xxxxx

230 User taylor logged in.

ftp> cd tex/manual (3)

250 CWD command successful.

ftp> get chap1.tex chap1.tex.bak (4)

200 PORT command successful.

150 ASCII data connection for chap1.tex (8612 bytes).

226 ASCII Transfer complete.

local: chap1.tex.bak remote: chap1.tex

8848 bytes received in 0.45 seconds (19 Kbytes/s)

ftp> quit (5)

221 Goodbye.

1. This starts the ftp program and tells it to open a connection with the

computer called baboon.10

2. Here you need to type in the name of your account on the remote com-

puter. If the name of your account on the remote computer is the same as

the account on your local computer, you don't need to type in the account

name but can just hit <enter>.

3. The cd command works like it does in Unix with one exception that we

won't go into here.

10If you are attempting to open a connection with a computer outside of the Engineering

Computer Network (ecn), you will need to include the entire internet address. In this case it
would be baboon.ecn.purdue.edu.

13

4. This copies the �le chap1.tex from the remote computer to chap1.bak

in your local working directory. If no destination �le is given the get

command gives the �le the same name on the local computer. The put

command will send a �le from the local computer to the remote computer.

The get and put commands don't like wildcards. (See section 2.7.1 for

a discussion of wildcards.) If you want to copy a number of �les that

have similar names but don't have the energy to type in all the names

individually the suggestion of mget and mput may make you very happy

that you read this manual.

5. Typing quit gets you out of the ftp program.

A short explanation of the available commands can be coaxed onto your

screen by typing help at the ftp> prompt.

2.5.13 grep

The grep (get regular expression) program searches for an expression in a �le

or group of �les. There are three versions: grep, egrep (extended grep), and

fgrep (�xed-string grep). The grep program expands wildcard characters in

the given expression. The egrep program searches for the expression including

alternations. The fgrep program searches for �xed-strings only and does not

expand wildcard characters. The egrep program has more sophisticated internal

algorithms, and is usually faster than grep or fgrep. The syntax for all three

versions is:

command [options] expression [file] ...

I have found these Unix commands to be very useful when programming.

Suppose I had a C program with a number of subroutines and a global variable

labeled chuck wivell. Suppose further that Chuck found out about this and

didn't like it. Of course I would change it immediately.

egrep chuck_wivell *.c

would give me a list of all �les where the o�ensive variable manifested itself. By

placing a -n option in the command line I could also obtain the line numbers

of the o�enses.

The wildcard characters that grep handles are

\ [] . ^ * $

and a delimiter used to mark the beginning and end of an expression. Delimiters

are necessary only if the expression contains blanks or wildcard characters. Here

are a few examples to help solidify this potential mumbo-jumbo:

grep 'Nostalgia is not what it used to be' fft.c

14

searches through the �le �t.c for the expression Nostalgia is not what it used to

be.

The wildcard character \." matches any character. Therefore,

grep 'eur.' fft.c

would �nd eureka, amateur, chau�eur, etc: : : in the �le �t.c.

Characters placed inside square brackets are each compared when searching.

grep '[cm]an' fft.c

would �nd any words with the sequence can or man, but would not locate

sequences like ran or and. More can be found on the wildcard characters in

section 2.7.1.

Preceding a wildcard character by a \n" turns o� the wildcard character

feature and the character is treated normally, i.e. the expression eddien. would

yield all the eddie.'s but not eddies or eddieboy.

Here are some useful options for all three of the greps:

-f Matches all the expressions in a given file as opposed to

the one typed in the command line.

-i Removes case sensitivity so that uppercase and lowercase

letters match.

-n Displays the line numbers containing a match.

-l Displays the names of the files that contain a match but

not the lines that contained a match.

-v Displays the lines that don't match as opposed to those that do.

2.5.14 history

The history command displays a list of commands you have previously typed.

For this command to work correctly you must �rst type set history=n where

n is the letter before o and the number of commands that should be saved. A

peek at section 2.7.5 may help explain this.

2.5.15 kill

At times you may �nd that you have a job running that you don't want to

continue. It is at this point that your thoughts may turn to murder. Kill is the

hitman of choice for Unix users. Kill is quick and cheap (roughly 13 keystrokes).

To put kill to work just type

kill -9 processid

where the processid can be found with the ps command.

If the process was created by the current interactive shell, you can type

kill -9 %n

where n is the process index indicated by the jobs command.

15

2.5.16 look

The look command searches through the system dictionary or lines in some other

sorted list for a word. I often use look to check my spelling of a word. Suppose

I want to know if inoculate is spelled correctly. I would type look inoculate.

If inoculate is in the system dictionary (which it is) it is echoed to the terminal,

and I know that the spelling is correct. If it is not in the system dictionary, it

is not echoed to the terminal.

2.5.17 mail

Most users with access to computer accounts in a higher education setting and

many in a corporate environment have access to internet. Your email address is

your account name@hostname.domain where hostname is the name of the local

computer and domain is the name of the \system" you are on. For example,

taylor@sunp.cr.usgs.gov was my email address this past summer. In this case,

taylor was my account name, sunp was the local computer name, and cr.usgs.gov

was the name of the \system" I was on. I can read mail sent to me by logging

on to the sunp computer and typing mail. Mail is sent to others by typing:

mail internet_address

where internet address is the address of the person you wish to send a message

to. You are then thrown into a very crude line editor that lets you type your

message. Remember to hit <return> at the end of each line because it can't

handle word wrapping. Typing a \." or a <ctrl-D> on a line all by itself will

signal the computer that you are �nished with the message. The computer will

then send the message you just wrote. If you wish to send a �le rather than

typing the message, use the following command:

mail internet_address < filename

where �lename is the name of the �le containing the message you wish to send.

Section 2.7.2 covers the redirection (<) operator in more detail.

2.5.18 ps

The ps (process status) command displays the status of current processes. If

no ags are set, the command displays only your processes. Take a look a the

man pages to see what ags might be of interest to you. I usually use -aux.

2.5.19 script

The script command records, in a speci�ed �le, everything you type and every

response you receive during your terminal session. To save the contents of your

session in a �le called logsession, type

script logsession

16

2.5.20 setenv

The setenv (set environment variable) command assigns values to environment

variables. Many environment variables are used by di�erent Unix programs.

We will see some of these in section 2.6. It is also possible to de�ne your own

variables. To either de�ne a new environment variable or change the value of

an existing variable type

setenv variablename newvalue

For example, setenv TERM vt100 assigns vt100 to the variable TERM.

2.5.21 source

The source command sends the contents of a text �le to the Unix shell. Suppose

I have (and I do) a number of alias commands that I want typed in. Rather

than typing them all in, I keep them stored in a �le called (oddly enough) .alias.

All I need to do is type

source .alias

and I have all my alias commands executed as if I had typed each one in

separately.

2.5.22 spell

The spell command checks the spelling of all the words in a desired �le against

those in the system dictionary or some other �le and outputs all the words

that it couldn't �nd in the system dictionary. To check the spelling of the �le

holy cow type

spell holy_cow

2.5.23 tar

The tar (tape archiver) program is useful for storing a bunch of �les in one �le

(usually on a magnetic tape, but it doesn't have to be). The syntax for this

command is

tar [key] [name ...]

where key is speci�ed by a plethora of options (see abridged list below and

unabridged list in the man pages) and name is either the �le name or device

name.

Here are some of the more commonly used keys:

17

c Creates a new tape.

f Used for taring to a tape.

t Lists the contents of a tar file.

v Turns verification on.

x Extracts selected files. If no file argument is given,

the entire contents of the tar file is extracted.

Here is the syntax I use to create and read tar �les:

tar cvf /dev/drivename directoryname <-- creates

tar xvf /dev/drivename directoryname <-- reads

2.5.24 telnet

The telnet command opens a connection to another computer via the internet

network. This command allows you to log onto machines around the world that

you have accounts on or that allow public access. For example, the University

of Michigan o�ers public telnet access to weather information. To access this

information type

telnet madlab.sprl.umich.edu 3000

2.5.25 umask

The umask command displays or sets the creation mask setting. The creation

mask setting de�nes the default attributes for new �les (see section 2.5.4). If

no argument is included, umask displays the current setting. To change the

creation mask setting type

umask value

where value is a three digit octal number similar to the one de�ned in sec-

tion 2.5.4. It is important to note that this is a mask. This means that a umask

setting of 022 would give the owner full privileges while the group and all oth-

ers would not have write privileges. This is exactly opposite of what we saw in

section 2.5.4 on chmod.

2.5.26 who

The who command simply tells you who is on the computer. Just type who.

2.5.27 A bunch more commands

The rest of the this subsection is a terse description of a few more Unix com-

mands that you may �nd occasion to use.

awk | A pattern scanning and processing language.

bar | Creates a tape archive. (Similar to tar)

18

bg | Moves a job into the background.

cal | Displays a calendar.

cc | Compiles C code.

chfn | Changes �nger information.

clear | Clears your terminal's screen.

cmp | Preforms a byte-by-byte comparison of two �les.

cut | Removes selected �elds from each line of a �le.

date | Displays or sets the date.

ed | The most basic line editor.

ex | A simple line editor. Also know as e or edit.

fg | Moves a job into the foreground.

�le | Determines the type of a �le by examining its contents.

fmt | Formats text.

hostname | Sets or prints the name of the current host computer.

jobs | Lists the current jobs in the shell.

make | Maintains, updates, and regenerates related programs and �les.

mesg | Permits or denies messages on your terminal.

mt | Provides magnetic tape control.

od | Dumps octal, decimal, hexadecimal, or ascii representations of �les.

pack/unpack | Similar to compress/uncompress, but uses Hu�man coding.

paste | Joins corresponding lines of several �les.

rev | Reverses the order of characters in each line.

rcp | Copies a �le from a remote computer to the local computer.

rsh | Execute a remote shell command.

sed | A stream editor{quite powerful.

sort | Sorts and collates lines.

split | Splits a �le into pieces.

19

stty | Sets or alters the options for a terminal.

tr | Translates characters.

uname | Displays the name of the current system.

units | Converts a number into di�erent units.

uuencode/uudecode | Encodes/decodes a binary �le into strictly ascii charac-

ters. (Useful for transmission via electronic mail)

write | Write a message to another user.

xget/xsend | Commands for sending/receiving secret mail.

2.6 Login �les

Every time you log in, the Unix shell searches your home directory for certain

�les and executes the commands in them. This allows you to customize your

Unix session. There are two initialization �les that I will discuss here. The .cshrc

(pronounced `dot-see-shirk') �le and the .login (pronounced `dot-login') �le. The

.cshrc �le is executed every time a new C shell is started. The .login is executed

after the .cshrc �le only when you initially log in. Generally, environment

variables should be set in the .login �le, and alias and set commands should be

in the .cshrc �le so that every new copy of the C shell will be able to use them.

2.6.1 The .cshrc �le

The following is an example .cshrc �le. The \#" character at the beginning

of a line tells the C shell to ignore the rest of the line. I don't expect you to

understand every command in this �le or in the example .login �le found in

the next section, but I don't care to explain them all either. This document is

getting too long as it is.

###

#

Example .cshrc file

#

by Chris Taylor

#

###

Set path shell variable

(See description of path in the paragraph followin this example .cshrc)

set path = (/usr/bin /usr/local /usr/local/bin /usr/bin/X11 \

/usr/ucb /usr/opt/bin ~)

Don't overwrite existing files with the redirection character ">"

set noclobber

20

Don't create core dump files when a program blows up.

limit coredumpsize 0

Check to see if this is an interactive shell.

If not, skip the rest of this file.

if ($?USER == 0 || $?prompt == 0) exit

Set C shell variables

Remember my 40 most recent events

set history=40

Save the most recent 40 events when I log out

set savehist=40

Substitute the filename to be completed when I type an <ESC> at

the command line

set filec

Tells the shell to ignore .o files when trying to complete filenames

when filec is set. (This doesn't hold if the .o file is the only

on that could be completed.

set fignore=.o

Tells "filec" not to cry if it can't complete a file.

set nobeep

Notify me when the status of background jobs change

set notify

Don't let me log out by pressing <ctrl-d>

set ignoreeof

Set TTY shell variable equal to the current terminal name

set TTY=`who am i | awk '{print $2}'`

Allow others to send messages directly to my terminal

mesg y

Set prompt to have the following form: [cmd#]cpu[directory]:

set cpu=`hostname | awk '{FS = "."; print $1}'` # set cpu = computer name

alias sp set prompt='\[!\]$cpu\[$cwd\]:\ ' # set sp to set the prompt

alias cd 'chdir \!* ; sp' # redefine cd command

alias pd 'pushd \!* ; sp' # redefine pd command

alias pp 'popd \!* ; sp' # redefine pp command

sp # set the prompt

Shortcut aliases

alias c 'clear'

alias dict 'vi /usr/dict/words'

alias gv 'ghostview'

alias h 'history !* | head -39 | more'

alias laser 'lpr -Pmsa13 -h'

alias line 'lpr -Ped3'

alias ll 'ls -la'

21

alias ls 'ls -x'

alias mine 'chmod og-rwx'

alias pwd 'echo $cwd' # This is faster than executing the pwd command

alias safe 'chmod a-w'

alias tmp 'cd /tmp/taylor'

end of .cshrc file

A number of commands, i.e. history , set , etc: : :are built in commands. The

rest of the commands must call an external program to execute it. Not all of

these other commands are stored in the same directory. They are spread into

a bunch of di�erent directories. The path variable is a shell variable that tells

the shell where to look for these commands. In the example .cshrc �le, the path

variable is set to

(. /usr/bin /usr/local /usr/local/bin /usr/bin/X11 /usr/ucb /usr/opt/bin ~)

This tells the shell to look �rst in the working directory, then in the /usr/bin

directory, next in the /usr/local directory, and so on until the �le has been found

or all directories have been looked at.

2.6.2 The .login �le

The following is an example .login �le. The same rules apply here as did with

the .cshrc �le.

###

#

Example .login file

#

by Chris Taylor

#

###

Set erase, kill, and interrupt keys

stty crt erase '^H' kill '^U' intr '^C'

Set the creation mask setting so that everyone can read my files

but can't write to them

umask 022

Set environment variables

Set my terminal type to xterm

setenv TERM xterm

Select vi as my editor of choice

setenv EDITOR /usr/ucb/vi

Show the path to my mailbox

setenv MAIL /usr/spool/mail/$USER

Set mail program

22

setenv MAILER /usr/ucb/mail

Set paging program

setenv PAGER more

Set default printer

setenv PRINTER hp

if (-f /bin/sun != 0) then

Using a Sun

if ("`tty`" == "/dev/console") then

Using console

setenv DISPLAY $cpu":0.0"

Ask if I want to start X11

echo ""; echo -n "Start up X11? "

set ans = $<

if ("$ans" != "n" && "$ans" != "N") then

Start X11

setenv DISPLAY $HOST\:0

stty -tostop

exec xinit .xstartup ; kbd_mode -a

clear

endif

unset ans

else

setenv DISPLAY `last | grep $USER | head -1 | \

awk '{print $3}' | awk '{FS=".";print $1 "." $2 ":0" }'`

endif

endif

end of .login file

2.7 Special characters

2.7.1 Wildcards

A number of characters are interpreted by the Unix shell before any other action

takes place. These characters are known as wildcard characters. Usually these

characters are used in place of �lenames or directory names.

* An asterisk matches any number of characters in a filename,

including none.

? The question mark matches any single character.

[] Brackets enclose a set of characters, any one of

which may match a single character at that position.

- A hyphen used within [] denotes a range of characters.

~ A tilde at the beginning of a word expands to the name

of your home directory. If you append another user's login

name to the character, it refers to that user's home directory.

Here are some examples:

1. cat c* displays any �le whose name begins with c including the �le c, if

it exists.

23

2. ls *.c lists all �les that have a .c extension.

3. cp ../rmt?. copies every �le in the parent directory that is four charac-

ters long and begins with rmt to the working directory. (The names will

remain the same.)

4. ls rmt[34567] lists every �le that begins with rmt and has a 3, 4, 5, 6,

or 7 at the end.

5. ls rmt[3-7] does exactly the same thing as the previous example.

6. ls ~lists your home directory.

7. ls ~hessen lists the home directory of the guy11 with the user id hessen.

2.7.2 Redirecting output

A program that normally reads its input from the terminal (standard input)

or normally writes its output to the terminal (standard output) may become

annoying if you would rather send the input from a �le instead of the keyboard

or send the output to a �le instead of the terminal. This annoyance can be

avoided if you happen to be swift with the redirection operators. The redirec-

tion operators are \<", \>", and \>>". The �rst is used to send input to a

command. The second is used to create a �le and send the output to it. The

third is used to append the output to an existing �le.

An example of the �rst redirection operator was already given in section 2.5.17

on electronic mail. Suppose you wanted to put a list of all the people logged on

into a �le called neatguys with the current time listed at the top of the �le.

date > neatguys

would create a �le with the date and time in it, and

who >> neatguys

would append the list of users logged on.

2.7.3 Pipes

A pipeline is a convenient way to channel the output of one command into the

input of another without creating an intermediate �le. Let's say we wanted to

get an alphabetical listing of the current processes. From a thorough study of

the previous section and the man pages for ps and sort, we already know how

to do this:

ps -aux > processes

sort processes

11Throughout this paper guy is assumed to be gender neutral unless otherwise stated.

24

This works, but it gives us a �le (namely processes) which we don't want. The

pipe symbol, \j" lets us bypass this intermediate �le. The above two commands

can be replace with the following:

ps -aux | sort

It is possible to connect a series of commands by additional pipe symbols.

We could pass our previous output through the more paging program to obtain

a more pleasing display of the results. This is a accomplish by typing

ps -aux | sort | more

One important point to recognize is that if a command isn't capable of

reading from standard input, it cannot be placed to the right of a pipe symbol.

2.7.4 Quote characters

Sometimes it is necessary to place wildcards in the command line without having

the shell treat them as special characters. This can be done by either preceding a

single wildcard character with a backslash, n, or enclosing a sequence of wildcard
characters in apostrophes, ' '.

For example, if you wanted to set your C shell prompt to a question mark

and typed

set prompt=?

the question mark would be expanded to be the �rst single-character �lename in

the working directory. If one exists it will be your prompt. If no single-character

�lenames exist, you will get a \set: No match" error. You should have typed

set prompt=\?

2.7.5 Other special characters

If you have set the history option (see section 2.6), you can use special characters

to repeat those commands without retyping them. Here are some of them:12

!! On a line by itself will repeat the most recent event.

!com Will repeat the most recent event that begins with "com".

!?string Will repeat the most recent event that contained "string".

!-n Will repeat the nth previous event.

!n Will repeat the nth event. Type "history" to see the events

numbered.

^old^new^ Will substitute "new" for the first occurrence of "old" in the

most recent event, and repeats that event.

: Will select specific words from an event line so you

can repeat parts of an event, e.g.

12By event I mean one command line. This may be a single command, or it may include a
number of commands in a pipeline, or whatever.

25

!?adam:s/adam/eve/

will substitute "eve" for "adam" and repeat the last event

with "adam" in it.

The semicolon, \;", separates commands. Typing

clear ; ls

is equivalent to typing each command on a separate command line.

The \&" symbol tells the shell to execute the command in the background.

For example, typing xid & would execute xid in the background and give my

Unix command line back so I could continue to use it even while xidwas running.

The C shell also �nds special meaning in the following:

" ` { } #

Rather than explain the uses of these special characters, I caution you to

avoid using them in �lenames.

2.8 Miscellaneous tips

2.8.1 Removing �les with strange names

There may come a time that you will discover that you have somehow created a

�le with a strange name that cannot be removed through conventional means.

This section contains some unconventional approaches that may aid in removing

such �les.

Files that begin with a dash can be removed by typing

rm ./-filename

A couple other ways that may work are

rm -- -filename

and

rm - -filename

Now let's suppose that we an even nastier �lename. One that I ran across

this summer was a �le with no �lename. The solution I used to remove it was

to type

rm -i *

26

This executes the rm command in interactive mode. I then answered \yes" to

the query to remove the nameless �le and \no" to all the other queries about

the rest of the �les.

Another method I could have used would be to obtain the inode number of

the nameless �le with

ls -i

and then type

find . -inum number -ok rm '{}' \;

where number is the inode number.

The -ok ag causes a con�rmation prompt to be displayed. If you would

rather live on the edge and not be bothered with the prompting, you can use

-exec in place of -ok.

Suppose you didn't want to remove the �le with the funny name, but wanted

to rename it so that you could access it more readily. This can be accomplished

by following the previous procedure with the following modi�cation to the �nd

command:

find . -inum number -ok mv '{}' new_filename \;

2.8.2 Wildcards beyond the working directory

Let's say we want to perform some command on a set of �les in the working

directory and all the directories below it. What if there was a Hewlett-Packard

advertisement that asked, \What if I had a slew of subdirectories containing

mounds of C source code, and I wanted to copy all of the library �les (�les

with a .h extension) into a separate directory called library . How could I do

it?" If you had read the next line, you would respond immediately with the

following:13

cp `find . -name '*.h' -print` library

2.8.3 Terminal input in a shell script

To input text from your terminal into a C shell script use the following syntax:

while (1)

set line = "$<"

if ("$line" == "") break

...

end

Also, be advised that the C shell has no way of distinguishing between a

blank line and an end-of-�le.

13That is, if you talk to your television.

27

2.8.4 Remote shell trick

Here is the proper syntax to use the rsh (remote shell) commandwithout having

the remote shell remain active until the remote command is completed.

rsh machine -n 'command >&/dev/null </dev/null &'

where machine is the name of the remote computer and command is the remote

command to be performed.

This works because the -n ag attaches the rsh's standard input to /dev/null

so you can execute the complete rsh command in the background of the local

computer. Also, the input/output redirections on the remote computer (the

stu� inside the single quotes) makes rsh think the session can be terminated

since there is no data ow. In all truth, you don't have to use /dev/null . Any

�lename will work.

2.8.5 Loops in scripts

Here is an example of a simple loop in a script. I use it to send out my biweekly

junkmail messages.14

#!/bin/sh

for i in `cat $HOME/jm/list`

do

mail -s 'Junkmail message number '$1 $i < jm.$1

done

The script takes one line at a time from the �le $HOME/jm/list and executes

the command

mail -s 'Junkmail message number '$1 $i < jm.$1

where $1 the the �rst argument on the command line calling the script and $i

is the line from the �le $HOME/jm/list .

2.8.6 More tricks

Every word of a �le can be placed on a separate line by typing

cat old_filename | tr -cs A-Za-z '\012' > new_filename

The following lists all words in �lename in alphabetical order.

cat filename | tr -cs A-Za-z '\012' | tr A-Z a-z | sort | uniq

You can �nd out when the �le .rhosts was last modi�ed by typing

echo .rhosts last modified on `/bin/ls -l .rhosts | cut -c33-44`

Typing head -n displays the �rst n lines of a �le. And typing last lists the

last logins.

14Send me mail at taylor@ecn.purdue.edu for more information on this service.

28

2.9 Things to try

Just for kicks, I have included a few commands for you to try typing in at the

shell prompt. Make sure you type each line exactly as it appears here.

1. If I had a (for every $ Congress spent, what would I have?

2. [Where are all those MIAs?

3. echo '[q]sa[ln0=aln256%Pln256/snlbx]sb3135071790101768542287578439snlbxq' |dc

4. got a light?

5. man: Why did you get a divorce?

6. make 'heads or tails of all this'

Note: The auto pilot command found in section 2.5.2 doesn't exist.

29

3 Vi | Text Editing

3.1 Overview

Vi (o�cially pronounced `vee-eye'/uno�cially pronounced `six' because of the

feeling one gets when using vi that it may be the text editor of the antichrist)

is a display oriented interactive text editor.

Vi15 makes one major philosophical deviation from every other text editor

I have come in contact with. The basic idea is that your hands don't have any

business straying from the home row keys. This can be an advantage for the

touch typist, but the guy who needs to see the letter on the key before pushing

it down tends to be less enamored with this characteristic. Since your �ngers

can only reach about �fty (50) keys without moving your hands, and since vi

has in excess of 100 commands, something drastic must be done in order to

designate all the functions a decent text editor must have. Rather than relying

on extra keys on your keyboard that seem a little too far away or special key

combinations that involve keys that your keyboard may or may not have, vi

simply assigns a couple functions to the keys in reach.

Vi operates in two modes16 (insert and command) in order to determine

which function should be performed when a key is pressed. This two mode

novelty, in my opinion, is what causes some to confuse vi with the devil himself

and causes others to place vi equal with God. Although I �nd it hard to justify

worshiping a text editor, I can (after much e�ort) appreciate the utility of vi.

Why vi? Vi is the default editor for Unix. It is possible to use other editors,

but if you learn vi you can be con�dent that it will be on any Unix machine

you use. However, the same level of con�dence with another editor may be

shortlived. It would be to your advantage to learn at least the basics of vi. For

those who use a text editor on a daily basis, particularly for programming, vi

will become a joy to use after a few months of friendship building.

As with any friendship, an emphasis must be placed on quality time, not just

quantity. Those who have little use for a text editor may be satis�ed with a cold

professional relationship with conversations limited to a few basic commands.

The rest of us would certainly bene�t from a little quality time with vi. By

quality time, I don't mean merely having the same conversations over and over

(repeating commands you already know). I don't mean just reading about what

makes vi tick. Although these are important activities, I mean telling vi things

you've never told it before and observing its response. Don't discuss important

issues with vi until you're pretty sure you know how it will react. Make sure

you make a backup copy of the �le you experiment with.

15Short for visual, but in keeping with the Unix mentality that any command longer than
�ve characters isn't worth using, the command has been truncated to the �rst two letters.

16Technically, there are three modes, but I have chosen to treat the command and line editor
modes as one mode. The line editor commands are a carry-over from the ex line editor.

30

3.2 Starting vi

To start vi just type vi at the operating system prompt. You will see a screen

with a column of tildes (~) down the left side of the screen. This signi�es

an empty workspace. To edit a �le, just include the �lename after it, e.g. vi

filename. You will see the text of the �le you included.17 Vi is now in command

mode. The most basic command to enter insert mode is i which lets you insert

text to the left of the cursor.

3.3 Insert mode

I begin with a brief description of the insert mode because it is very straight

forward. In insert mode the characters you type are inserted into your document.

You can use the backspace key to delete any typing mistakes you have made on

the current input line. The escape key (<esc>) takes you out of insert mode

and back to the command mode. If you are ever in doubt about what mode you

are in, just press <esc> a few times until vi starts complaining. You will then

know that you are in the command mode.

3.4 Command mode

Command mode is where you do everything that isn't done in insert mode. In

command mode the same keys that caused letters to appear on your screen in

insert mode now represent totally di�erent functions. Rather than go into a

detailed discussion of the 100 or so commands, this section contains a list of the

more popular commands. The next section contains a more comprehensive list

of vi commands.

3.4.1 Moving around

h move the cursor one character to the left

j move the cursor one character down

k move the cursor one character up

l move the cursor one character to the right

0 move to the beginning of a line

$ move to the end of a line

G move to the end of a file

1G move to the first line of a file

<ctrl-F> move down one screen

<ctrl-B> move up one screen

If you try to move somewhere that vi doesn't want to go, e.g. pressing h

when the cursor is in the left-most column, your terminal will complain by either

beeping or ashing the screen.

17If the �le does not exist, it will be created.

31

3.4.2 Deleting text

x delete the character under the cursor

dd delete a line

3.4.3 Saving and quitting

:w write to disk

ZZ write to disk and exit

:q! exit without writing to disk

Actually, the command for quitting vi is :q. You can save and quit by

typing :wq but ZZ does the same thing18 and takes one less keystroke. If there

are unsaved changes to the text and you try to quit using :q, vi will warn you

that you have unsaved changes and will prevent you from quitting. In order to

quit without saving the changes you must use the override switch, !.

3.4.4 Copy, delete, and moving text

Knowing how to copy, delete, and move text is a prerequisite to any serious

text editing task. If you have a small amount of text to delete or copy you may

�nd it convenient to use dd or yy. These commands delete or yank the line of

text that the cursor is on. dd deletes the current line of text and places it in a

bu�er. yy copies the current line of text to a bu�er while leaving the original

text unaltered. Many commands can be preceded by a number. This number

indicates the number of times the command is repeated. These commands are

no exception, e.g. 3dd deletes the line the cursor is on as well as the two lines

below it and places them in a bu�er. Text can be retrieved from the text bu�er

by typing p. The \pull" command inserts the text from the bu�er into the text

�le beginning on the line below the cursor. This method of deleting and yanking

works well for text blocks of known length or an easily countable number of lines,

but is less satisfactory of large blocks of text.

As a result, vi has another method of text manipulation that involves mark-

ing text. Vi is capable of marking 26 di�erent locations in a �le. To mark a

location in a text �le move the cursor to the desired location and type m followed

by the name you want to use. Each lowercase letter of the alphabet is a name.

Suppose we have a portion of text we wish to move from one location to

another. We can do this by marking the beginning of the text block with the

name q, i.e. mq will give the current cursor location the name q. Then we move

to the end of the portion of text we wish to move and type d'q. This command

deletes everything from the marked position to the cursor position and places

it in a bu�er. Text in the bu�er is retrieved using the \pull" command already

described. The \yank" command allows you to copy the text to the bu�er

18For the pureist, :wq and ZZ are not exactly the same. :wq always saves, whereas ZZ saves
only if changes have been made since the last save.

32

instead of deleting it. Typing y'q instead of d'q will place a copy of the text

in the bu�er and leave the original text unaltered.19

3.4.5 Search and replace

The search command is /. To search for polite type /polite. n repeats the

search in the same direction, and N repeats the search in the opposite direction.

The search option accepts most of the standard Unix pattern matching lan-

guage. (See section 2.7.1.) Suppose I had a �le that contained the following

text:

There was a young man of Milan

Whose poems, they never would scan;

When asked why it was,

He said, `It's because

I always try to get as many words into the last line as I possibly can'.

|anonymous

Here are a few examples (using this text) that you will probably never use

but may �nd inspiring:

/[a-z]as

will search for any lowercase letter followed by as. In this example, it would

�nd was and last but not as or asked.

/[^c]an

will search for any an preceded by any character other than a c. In our text it

would �nd Milan but not scan or can.

/^[A-Z].*\. *$

will search for any line that begins with a capital letter and ends with a period

and any number of blanks. Our only match in the example text would be with

the last line.

All of these search patterns can be used in the search and replace command

that takes on the following structure:

:s/search_string/replacement_string/g

This command replaces every search string on the current line with replace-

ment string . Omitting the g (global) ag at the end of the command will cause

only the �rst occurrence of search string to be altered. Often you may wish

to con�rm each replacement. This can be done with the con�rm ag c. The

con�rm ag should be placed after or in place of the g ag. Suppose I had the

following line:

19Using ' in d'q begins deleting text at the beginning of the line that the q mark is on.

Using ` instead, i.e. d`q begins deleting text at the exact location of the mark. This holds
for the yank command as well.

33

Give a skeptic and inch... and he'll take a mile.

and typed

:s/take a mile/measure it/

I would be left with

Give a skeptic and inch... and he'll measure it.

Any command that begins with a \:" is called a line mode command and

performs its duty on the line the cursor is currently on. However, you can

override vi 's default of operating only on the current line by preceding them

with a range of line numbers. For example, if I wanted to replace guy with gal

on lines 32 through 56 I would type

:32,56s/guy/gal/g

Omitting the g would cause only the �rst occurrence of guy in each line to be

replaced. The \." and \$" play a special role in this sort of designation. \."

indicates the current line, and \$" indicates the last line of the �le. Therefore, if

I wanted to delete20 from the current line to the end of the �le I would enter:21

:.,$d

I could even do something like:

:.,/Edison/d

which would delete from the current line to the next line that contained Edison.

One other shortcut that might be worth mentioning is that 1,$ and % both

indicate all the lines in the �le. Therefore,

:1,$s/search_string/replacement_string/g

and

:%s/search_string/replacement_string/g

do exactly the same thing.

3.4.6 Undo

The undo command, u, is another feature that has saved me many times. Press-

ing u undoes the last command you told vi to perform. Another form of the

undo command is U which undoes all the changes made to the current line since

you moved there.

20This works because :d is a line mode command that deletes the current line.
21The same could be accomplished by typing dG.

34

3.4.7 Repeat

Often times you may desire to repeat the last command performed. This can

be done with the \." command. Place the cursor in the appropriate position

and press \." to repeat the most recent command. Suppose I had a C program

in which I wished to switch a variable name from no way to yes way in two

di�erent places. One way I could accomplish this would be to place my cursor

on the beginning of the �rst no way and type cw (change word) and then type

yes way <esc>. This would accomplish my task for the �rst case. Now all I

would need to do to change the second no way would be to place my cursor at

the beginning of it and type \." to repeat the last command.

3.5 Vi reference

Here is a more comprehensive list of vi commands in command mode.22 23

3.5.1 Notation for this reference

default values : 1

<*> : `*' must not be taken literally

[*] : `*' is optional

^X : <ctrl-X>

<sp> : Space

<cr> : Carriage return

<lf> : Linefeed

<ht> : Horizontal tab

<esc> : Escape

<erase> : Your erase character

<kill> : Your kill character

<intr> : Your interrupt character

<a-z> : An element in the range

N : Number (`*' = allowed, `-' = not appropriate)

CHAR : Char unequal to <ht>|<sp>

WORD : Word followed by <ht>|<sp>|<lf>

3.5.2 Move commands (See also Display commands)

N | Command | Meaning

---+--------------------+---

* | h | ^H | <erase> | <*> chars to the left.

* | j | <lf> | ^N | <*> lines downward.

* | l | <sp> | <*> chars to the right.

* | k | ^P | <*> lines upward.

* | $ | To the end of line <*> from the cursor.

- | ^ | To the first CHAR of the line.

* | _ | To the first CHAR <*> - 1 lines lower.

* | - | To the first CHAR <*> lines higher.

22Heavily borrowed from Vi Reference by Maarten Litmaath.
23Warning: some vi versions don't support the more esoteric features described in this

document.

35

* | + | <cr> | To the first CHAR <*> lines lower.

- | 0 | To the first char of the line.

* | | | To column <*> (<ht>: only to the endpoint).

* | f<char> | <*> <char>s to the right (find).

* | t<char> | Till before <*> <char>s to the right.

* | F<char> | <*> <char>s to the left.

* | T<char> | Till after <*> <char>s to the left.

* | ; | Repeat latest `f'|`t'|`F'|`T' <*> times.

* | , | Idem in opposite direction.

* | w | <*> words forward.

* | W | <*> WORDS forward.

* | b | <*> words backward.

* | B | <*> WORDS backward.

* | e | To the end of word <*> forward.

* | E | To the end of WORD <*> forward.

* | G | Go to line <*> (default EOF).

* | H | To line <*> from top of the screen (home).

* | L | To line <*> from bottom of the screen (last).

- | M | To the middle line of the screen.

* |) | <*> sentences forward.

* | (| <*> sentences backward.

* | } | <*> paragraphs forward.

* | { | <*> paragraphs backward.

- |]] | To the next section (default EOF).

- | [[| To the previous section (default begin of file).

- | `<a-z> | To the mark.

- | '<a-z> | To the first CHAR of the line with the mark.

- | `` | To the cursor position before the latest absolute

| jump (of which are examples `/' and `G').

- | '' | To the first CHAR of the line on which the cursor

| was placed before the latest absolute jump.

- | /<string> | To the next occurrence of <string>.

- | /<string>/+n | To the next nth occurrence of <string>.

- | ?<string> | To the previous occurrence of <string>.

- | n | Repeat latest `/'|`?' (next).

- | N | Idem in opposite direction.

- | % | Find the next bracket and go to its match

| (also with `{'|`}' and `['|`]').

Entries in this table that have an *" are repeatable commands whereas

entries with a \-" are not. For example, if I type 4w my cursor will travel four

words farther into my document.

3.5.3 Searching

:ta <name> | Search in the tags file[s] where <name> is

| defined (file, line), and go to it.

^] | Use the name under the cursor in a `:ta' command.

^T | Pop the previous tag off the tagstack and return

| to its position.

:[x,y]g/<string>/<cmd> | Search globally [from line x to y] for <string>

| and execute the `ex' <cmd> on each occurrence.

:[x,y]v/<string>/<cmd> | Execute <cmd> on the lines that don't match.

36

3.5.4 Undoing changes

u | Undo the latest change.

U | Undo all changes on a line, while not having

| moved off it (unfortunately).

:q! | Quit vi without writing.

:e! | Re-edit a messed-up file.

3.5.5 Inserting text

End inserting text with <esc>

* | a | <*> times after the cursor.

* | A | <*> times at the end of line.

* | i | <*> times before the cursor (insert).

* | I | <*> times before the first CHAR of the line

* | o | On a new line below the current (open).

| The count is only useful on a slow terminal.

* | O | On a new line above the current.

| The count is only useful on a slow terminal.

* | ><move> | Shift the lines described by <*><move> one

| shiftwidth to the right.

* | >> | Shift <*> lines one shiftwidth to the right.

* | ["<a-zA-Z1-9>]p | Put the contents of the (default undo) buffer

| <*> times after the cursor.

| A buffer containing lines is put only once,

| below the current line.

* | ["<a-zA-Z1-9>]P | Put the contents of the (default undo) buffer

| <*> times before the cursor.

| A buffer containing lines is put only once,

| above the current line.

* | . | Repeat previous command <*> times. If the last

| command before a `.' command references a

| numbered buffer, the buffer number is

| incremented first (and the count is ignored):

|

| "1pu.u.u.u.u - `walk through' buffers 1

| through 5

| "1P.... - restore them

3.5.6 Deleting text

Everything deleted can be stored into a bu�er. This is achieved by putting a "

and a lowercase letter before the delete command. The deleted text will be in

the bu�er with the used letter. If an uppercase letter is used as bu�er name,

the the corresponding bu�er will be augmented instead of overwritten with the

text. The undo bu�er always contains the latest change. Bu�ers <1-9> contain

the latest 9 line deletions ("1 is most recent).

* | x | Delete <*> chars under and after the cursor.

* | X | <*> chars before the cursor.

* | d<move> | From begin to endpoint of <*><move>.

* | dd | <*> lines.

37

- | D | The rest of the line.

* | <<move> | Shift the lines described by <*><move> one

| shiftwidth to the left.

* | << | Shift <*> lines one shiftwidth to the left.

* | . | Repeat latest command <*> times.

3.5.7 Changing text

End changing text with <esc>

* | r<char> | Replace <*> chars by <char> - no <esc>.

* | R | Overwrite the rest of the line,

| appending change <*> - 1 times.

* | s | Substitute <*> chars.

* | S | <*> lines.

* | c<move> | Change from begin to endpoint of <*><move>.

* | cc | <*> lines.

* | C | The rest of the line and <*> - 1 next lines.

* | =<move> | If the option `lisp' is set, this command

| will realign the lines described by <*><move>

| as though they had been typed with the option

| `ai' set too.

- | ~ | Switch lower and upper cases

| (should be an operator, like `c').

* | J | Join <*> lines (default 2).

* | . | Repeat latest command <*> times (`J' only once).

- | & | Repeat latest `ex' substitute command, e.g.

| `:s/wrong/good'.

- | :[x,y]s/<p>/<r>/<f>| Substitute (on lines x through y) the pattern <p>

| (default the last pattern) with <r>. Useful

| flags <f> are `g' for `global' (i.e. change

| every non-overlapping occurrence of <p>) and

| `c' for `confirm' (type `y' to confirm a

| particular substitution, else <cr>). Instead

| of `/' any punctuation CHAR unequal to <lf>

| can be used as delimiter.

3.5.8 Substitute replacement patterns

The basic meta-characters for the replacement pattern are \&" and \~ "; these

are given as n& and n~when nomagic is set. Each instance of \&" is replaced

by the characters which the regular expression matched. The meta-character

\ ~" stands, in the replacement pattern, for the de�ning text of the previous

replacement pattern. Other meta-sequences possible in the replacement pattern

are always introduced by the escaping character \n". The sequence nn (where

n is an integer between 1 and 9) is replaced by the text matched by the n
th

regular subexpression enclosed between n(and n). The sequences nu and nl
cause the immediately following character in the replacement to be converted to

uppercase or lowercase respectively if this character is a letter. The sequences

nU and nL turn such conversion on, either until nE or ne is encountered, or until
the end of the replacement pattern.

38

3.5.9 Remembering text (yanking)

With yank commands you can put "<a--zA--Z> before the command, just as

with delete commands. Otherwise you only copy to the undo bu�er.

* | y<move> | Yank from begin to endpoint of <*><move>.

* | yy | <*> lines.

* | Y | Idem (should be equivalent to `y$' though).

- | m<a-z> | Mark the cursor position with a letter.

3.5.10 Commands while in insert or change mode

^@ | If typed as the first character of the

| insertion, it is replaced with the previous

| text inserted (max. 128 chars), after which

| the insertion is terminated.

^V | Deprive the next char of its special meaning

| (e.g. <esc>).

^D | One shiftwidth to the left.

0^D | Remove all indentation on the current line

| (there must be no other chars on the line).

^^D | Idem, but it is restored on the next line.

^T | One shiftwidth to the right

^H | <erase> | One char back.

^W | One word back.

<kill> | Back to the begin of the change on the

| current line.

<intr> | Like <esc> (but you get a beep as well).

3.5.11 Display commands (See also Move commands)

^G | Give file name, status, current line number

| and relative position.

^L | Refresh the screen (sometimes `^P' or `^R').

^R | Sometimes vi replaces a deleted line by a `@',

| to be deleted by `^R' (see option `redraw').

[*]^E | Expose <*> more lines at bottom, cursor stays

| put (if possible).

[*]^Y | Expose <*> more lines at top, cursor stays put

| (if possible).

[*]^D | Scroll <*> lines downward

| (default the number of the previous scroll;

| initialization: half a page).

[*]^U | Scroll <*> lines upward

| (default the number of the previous scroll;

| initialization: half a page).

[*]^F | <*> pages forward.

[*]^B | <*> pages backward (in older versions `^B'

| only works without count).

z- | Move current line to bottom of the screen.

z. | Move current line to the center of the screen.

/string/z- | Move line with string in it to the bottom of

| the screen.

39

If in the next commands the �eld <wi> is present, the windowsize will

change to <wi>. The window will always be displayed at the bottom of the

screen.

[*]z[wi]<cr> | Put line <*> at the top of the window

| (default the current line).

[*]z[wi]+ | Put line <*> at the top of the window

| (default the first line of the next page).

[*]z[wi]- | Put line <*> at the bottom of the window

| (default the current line).

[*]z[wi]^ | Put line <*> at the bottom of the window

| (default the last line of the previous page).

[*]z[wi]. | Put line <*> in the center of the window

| (default the current line).

3.5.12 Writing, editing other �les, and quitting vi

In \:" \ex" commands \%" denotes the current �le, \#" is a synonym for the

alternate �le (which normally is the previous �le). Marks can be used for line

numbers too: '<a-z>. In the :w , :f , :cd , :e, and :n commands, shell meta-

characters can be used.

:q | Quit vi, unless the buffer has been changed.

:q! | Quit vi without writing.

^Z | Suspend vi.

:w | Write the file.

:w <name> | Write to the file <name>.

:w >> <name> | Append the buffer to the file <name>.

:w! <name> | Overwrite the file <name>.

:x,y w <name> | Write lines x through y to the file <name>.

:wq | Write the file and quit vi; some versions quit

| even if the write was unsuccessful!

| Use `ZZ' instead.

ZZ | Write if the buffer has been changed, and

| quit vi. If you have invoked vi with the `-r'

| option, you'd better write the file

| explicitly (`w' or `w!'), or quit the

| editor explicitly (`q!') if you don't want

| to overwrite the file - some versions of vi

| don't handle the `recover' option very well.

:x [<file>] | Idem [but write to <file>].

:x! [<file>] | `:w![<file>]' and `:q'.

:pre | Preserve the file - the buffer is saved as if

| the system had just crashed; for emergencies,

| when a `:w' command has failed and you don't

| know how to save your work (see `vi -r').

:f <name> | Set the current filename to <name>.

:cd [<dir>] | Set the working directory to <dir>

| (default home directory).

:cd! [<dir>] | Idem, but don't save changes.

:e [+<cmd>] <file> | Edit another file without quitting vi - the

| buffers are not changed (except the undo

| buffer), so text can be copied from one file to

40

| another this way. [Execute the `ex' command

| <cmd> (default `$') when the new file has been

| read into the buffer.] <cmd> must contain no

| <sp> or <ht>. See `vi startup'.

:e! [+<cmd>] <file> | Idem, without writing the current buffer.

^^ | Edit the alternate (normally the previous) file.

:rew | Rewind the argument list, edit the first file.

:rew! | Idem, without writing the current buffer.

:n [+<cmd>] [<files>] | Edit next file or specify a new argument list.

:n! [+<cmd>] [<files>] | Idem, without writing the current buffer.

:args | Give the argument list, with the current file

| between `[' and `]'.

3.5.13 Macros

When mapping take a look at the options to and remap (below).

:map <string> <seq> | <string> is interpreted as <seq>, e.g.

| `:map ^C :!cc %^V<cr>' to invoke `cc' (the C

| compiler) from within the editor

| (vi replaces `%' with the current file name).

:map | Show all mappings.

:unmap <string> | Deprive <string> of its mapping. When vi

| complains about non-mapped macros (whereas no

| typos have been made), first do something like

| `:map <string> Z', followed by

| `:unmap <string>' (`Z' must not be a macro

| itself), or switch to `ex' mode first with `Q'.

:map! <string> <seq> | Mapping in append mode, e.g.

| `:map! \be begin^V<cr>end;^V<esc>O<ht>'.

| When in append mode <string> is preceded by

| `^V', no mapping is done.

:map! | Show all append mode mappings.

:unmap! <string> | Deprive <string> of its mapping (see `:unmap').

:ab <string> <seq> | Whenever in append mode <string> is preceded and

| followed by a breakpoint (e.g. <sp> or `,'), it

| is interpreted as <seq>, e.g.

| `:ab ^P procedure'. A `^V' immediately

| following <string> inhibits expansion.

:ab | Show all abbreviations.

:unab <string> | Do not consider <string> an abbreviation

| anymore (see `:unmap').

@<a-z> | Consider the contents of the named register a

| command, e.g.:

| o0^D:s/wrong/good/<esc>"zdd

| Explanation:

| o - open a new line

| 0^D - remove indentation

| :s/wrong/good/ - this input text is an

| `ex' substitute command

| <esc> - finish the input

| "zdd - delete the line just

| created into register `z'

41

| Now you can type `@z' to replace `wrong'

| with `good' on the current line.

@@ | Repeat last register command.

3.5.14 Switch and shell commands

Q | ^\ | <intr><intr> | Switch from vi to `ex'.

: | An `ex' command can be given.

:vi | Switch from `ex' to vi.

:sh | Execute a subshell, back to vi by `^D'.

:[x,y]!<cmd> | Execute a shell <cmd> [on lines x through y;

| these lines will serve as input for <cmd> and

| will be replaced by its standard output].

:[x,y]!! [<args>] | Repeat last shell command [and append <args>].

:[x,y]!<cmd> ! [<args>] | Use the previous command (the second `!') in a

| new command.

[*]!<move><cmd> | The shell executes <cmd>, with as standard

| input the lines described by <*><move>,

| next the standard output replaces those lines

| (think of `cb', `sort', `nroff', etc.).

[*]!<move>!<args> | Append <args> to the last <cmd> and execute it,

| using the lines described by the current

| <*><move>.

[*]!!<cmd> | Give <*> lines as standard input to the

| shell <cmd>, next let the standard output

| replace those lines.

[*]!!! [<args>] | Use the previous <cmd> [and append <args> to it].

:x,y w !<cmd> | Let lines x to y be standard input for <cmd>

| (notice the <sp> between the `w' and the `!').

:r!<cmd> | Put the output of <cmd> onto a new line.

:r <name> | Read the file <name> into the buffer.

3.5.15 Vi startup

As discussed earlier vi is started by simply typing vi filename where the �le-

name is optional. It is possible to include a list of �lenames instead of just the

one. This tells vi to edit the �rst �le. After you are �nished with the �le it

edits the second and continues this process until all the �les in the list have

been edited.

The editor can be initialized by the shell variable EXINIT, which looks like:

EXINIT='<cmd>|<cmd>|...'

<cmd>: set options

map ...

ab ...

export EXINIT (in the Bourne shell)

However, a better way is to put the list of initializations into a �le. If this �le

is located in your home directory, and is named .exrc and the variable EXINIT

is not set, the list will be executed automatically at startup time. However, vi

will always execute the contents of a .exrc in the current directory, if you own

the �le. Otherwise you have to type

42

:so file

to source the �le yourself.

In a .exrc �le a comment is introduced with a double quote character: the

rest of the line is ignored.24

On-line initializations can be given with vi + <cmd> file, e.g.:

vi +x file | The cursor will immediately jump to line x

| (default last line).

vi +/<string> file | Jump to the first occurrence of <string>.

You can start at a particular tag with:

vi -t <tag> | Start in the right file in the right place.

Sometimes, e.g. if the system crashed while you were editing, it is possible

to recover �les lost in the editor by typing vi -r file. Typing vi -r shows

the �les you can recover. The readonly ag allows you to view a �le with vi

without the danger of accidentally saving changes. However, if you do make

changes that you decide you want to save, typing :w! will override the readonly

option.

3.5.16 The most important options

ai | autoindent - In append mode after a <cr> the

| cursor will move directly below the first

| CHAR on the previous line. However, if the

| option `lisp' is set, the cursor will align

| at the first argument to the last open list.

aw | autowrite - Write at every shell escape

| (useful when compiling from within vi).

dir=<string> | directory - The directory for vi to make

| temporary files (default `/tmp').

eb | errorbells - Beeps when you goof

| (not on every terminal).

ic | ignorecase - No distinction between upper and

| lower cases when searching.

lisp | Redefine the following commands:

| `(', `)' - move backward (forward) over

| S-expressions

| `{', `}' - idem, but don't stop at atoms

| `[[', `]]' - go to previous (next) line

| beginning with a `('

| See option `ai'.

list | <lf> is shown as `$', <ht> as `^I'.

magic | If this option is set (default), the chars `.',

| `[' and `*' have special meanings within search

| and `ex' substitute commands. To deprive such

| a char of its special function it must be

24An exception to this is if the last command on the line is a map[!] or ab command or a
shell escape, a trailing comment is not recognized, but considered part of the command.

43

| preceded by a `\'. If the option is turned off

| it's just the other way around. Meta-chars:

| ^<string> - <string> must begin the line

| <string>$ - <string> must end the line

| . - matches any char

| [a-z] - matches any char in the range

| [^a-z] - any char not in the range

| [<string>] - matches any char in <string>

| [^<string>] - any char not in <string>

| <char>* - 0 or more <char>s

| \<<string> - <string> must begin a word

| <string>\> - <string> must end a word

modeline | When you read an existing file into the buffer,

| and this option is set, the first and last 5

| lines are checked for editing commands in the

| following form:

|

| <sp>vi:set options|map ...|ab ...|!...:

|

| Instead of <sp> a <ht> can be used, instead of

| `vi' there can be `ex'. Warning: this option

| could have nasty results if you edit a file

| containing `strange' modelines.

nu | number - Numbers before the lines.

para=<string> | paragraphs - Every pair of chars in <string> is

| considered a paragraph delimiter nroff macro

| (for `{' and `}'). A <sp> preceded by a `\'

| indicates the previous char is a single letter

| macro. `:set para=P\ bp' introduces `.P' and

| `.bp' as paragraph delimiters. Empty lines and

| section boundaries are paragraph boundaries

| too.

redraw | The screen remains up to date.

remap | If on (default), macros are repeatedly

| expanded until they are unchanged.

| Example: if `o' is mapped to `A', and `A'

| is mapped to `I', then `o' will map to `I'

| if `remap' is set, else it will map to `A'.

report=<*> | Vi reports whenever e.g. a delete

| or yank command affects <*> or more lines.

ro | readonly - The file is not to be changed.

| However, `:w!' will override this option.

sect=<string> | sections - Gives the section delimiters (for `[['

| and `]]'); see option `para'. A `{' beginning a

| line also starts a section (as in C functions).

sh=<string> | shell - The program to be used for shell escapes

| (default `$SHELL' (default `/bin/sh')).

sw=<*> | shiftwidth - Gives the shiftwidth (default 8

| positions).

sm | showmatch - Whenever you append a `)', vi shows

| its match if it's on the same page; also with

| `{' and `}'. If there's no match at all, vi

| will beep.

taglength=<*> | The number of significant characters in tags

| (0 = unlimited).

44

tags=<string> | The space-separated list of tags files.

terse | Short error messages.

to | timeout - If this option is set, append mode

| mappings will be interpreted only if they're

| typed fast enough.

ts=<*> | tabstop - The length of a <ht>; warning: this is

| only IN the editor, outside of it <ht>s have

| their normal length (default 8 positions).

wa | writeany - No checks when writing (dangerous).

warn | Warn you when you try to quit without writing.

wi=<*> | window - The default number of lines vi shows.

wm=<*> | wrapmargin - In append mode vi automatically

| puts a <lf> whenever there is a <sp> or <ht>

| within <wm> columns from the right margin

| (0 = don't put a <lf> in the file, yet put it

| on the screen).

ws | wrapscan - When searching, the end is

| considered `stuck' to the begin of the file.

:set <option> | Turn <option> on.

:set no<option> | Turn <option> off.

:set <option>=<value> | Set <option> to <value>.

:set | Show all non-default options and their values.

:set <option>? | Show <option>'s value.

:set all | Show all options and their values.

3.6 Miscellaneous tips

Although you should be able to come up with all of the following commands by

studying the tables of vi commands, I have included a few examples that I have

found useful.

3.6.1 Line deletions

:g/string/d

deletes every line that contains string , while

:v/string/d

deletes every line that does not contain string.

3.6.2 Switching cases

In the replacement part of a substitution command, i.e. between the second \/"

and third \/",

\u means make the following character upper case

\l means make the following character lower case

\U means make the rest of the replacement upper case

\L means make the rest of the replacement lower case

How about a few examples?

45

1. Make the �rst letter of every word from line 18 to 43 uppercase.

:18,43s/\<./\u&/g

2. Change \uPPeR" and \LoweR" in any mixture of cases to lowercase.

:s/[UuLl][PpOo][PpWw][Ee][Rr]/\L&/

3. Make the whole �le uppercase.

:%s/.*/\U&/

4. Make the region from line m to line n all uppercase.

:'m,'ns/.*/\U&/

5. Make a paragraph all lowercase.

:?^$?,/^$/s/.*/\L&/

6. Make the �rst letter of every word in a paragraph uppercase.

:?^$?,/^$/s/\([^][^]*\)/\u&/g

7. Make the second word of each line uppercase.

:1,$s/^\([^]*\) \([^]*\) \(.*\)/\1 \U\2\e \3/

3.6.3 Spell checking in vi

To check the spelling of your document without exiting out of vi , type

:!spell % > %.sp

:e %.sp

:e# (To get back to your document)

3.6.4 Additional search and replace

To change Gravity isn't just a "good idea." It's the "law." to Gravity

isn't just a ``good idea.'' It's the ``law.'' type

:g/$/s/"\([^"]*\)"/``\1''/g

The following will �nd words that begin and end with a vowel:

/\<[aeiouAEIOU][a-zA-Z']*[aeiouAEIOU]\>

46

3.6.5 Removing blank lines

Blank lines can be removed from a �le with any of the following:

:v/./d

or

:g/^$/d

or

:%!/usr/ucb/cat -s

or

:%!sed /./,/^$/!d

Be aware that you may need to get rid of trailing whitespace �rst. This can be

accomplished with

:%s/[^I]*$/!d

3.6.6 Writing from bu�ers

To save the contents of the a bu�er to �lename, type

:e filename<RETURN>"ap (to edit a new file and put 'a's contents in it)

:w (to save it)

To save a portion of a �le to another �le you could type

ma (mark text at the top of the region to be saved)

mb (mark text at the bottom of the region to be saved)

:'a,'b w filename

3.7 Further reading

A number of other vi documents can be found via anonymous ftp in: /pub/vi

at cs.uwp.edu

47

4 About the Author

Chris Taylor's accomplishments speak for themselves but often have poor grammar.

Here is a grammatically corrected version of what they say. Chris Taylor is a graduate
student in electrical engineering at Purdue University where he is currently enjoying

his twenty-fourth trip around the sun. He has consumed four tons of cow's milk and

counted to 125,000 by ones all in the last decade. Chris was not homecoming king
in high school or college, he did not graduate at the top of his high

school class (although the same cannot be said of college). He was

not involved with any political movements in the 1960's, and has
never been in a rock band. Chris hasn't been convicted of grand

theft auto in the last �ve years and has never been convicted of a

violent crime. He has moved eighteen di�erent times living in four
countries and three states but contends that he is not running from

anything or anyone. He has ridden more elephants than horses and

hopes to one day swim across the Arctic Ocean.

Printed on recyclable paper. To reuse: Bleach in warm water, then let dry for three days.

48

